187 research outputs found

    Identifying the obstacles to green human resource management practices in Iran

    Get PDF
    As green human resource management is known as a way of promotion of sustainable employee practices with the help of interface of every employee, there has always been a question in mind why in some societies green human resource management practices cannot be implemented effectively. The purpose of this paper is to find factors affecting green human resource management practices as barriers to help managers identify the root and be able to surmount the obstacles. As the result showed two groups of factors were defined; 1- Internal factors including personality and upbringing, knowledge of individuals, organizational culture, and 2- External factors including digital divide and education and training. Then the attention is drawn to the significance of these factors to see which one can have the most and the least effect. Therefore to rank the value of these factors the Friedman test was used. The result showed that among all these factors personality and upbringing have the highest effect and digital divide has the lowest effect on green human resource management practices.  It is believed that by emphasizing and paying more attention to these factors the implementation of green human resource management can be improved more effectively and employees will be more willing to show green behavior towards the environment or the use of resources

    Fat, oil and grease reduction in commercial kitchen ductwork: a novel biological approach

    Get PDF
    Recent research has characterised emissions upon cooking a variety of foods in a commercial catering environment in terms of volume, particle size and composition. However, there has been limited focus on the deposition of solid grease in commercial kitchen ductwork, the sustainability of these systems and their implications on the heat recovery potential of kitchen ventilation extract air. This paper reviews the literature concerning grease, commonly referred to as Fat, Oils and Grease (FOG) abatement strategies and finds that many of these systems fall short of claimed performances. Furthermore these technologies often add to the energy cost of the operation and reduce the potential application of heat recovery in the ventilation ductwork. The aim of this study was to develop and evaluate a novel FOG removal system, with a focus on low environmental impact. The novel FOG removal system, utilises the biological activity of Bacillus subtilis and associated enzymes. The biological reagent is delivered via a misting system. The temperature, relative humidity and FOG deposit thickness were measured in the ductwork throughout a 3 month trial period. FOG deposit thickness was reduced by 47% within 7 weeks. The system was found to be effective at reducing the FOG deposit thickness with minimal energy cost and impact upon the kitchen and external environment. Internal ductwork operating temperature was measured with respect to future heat recovery potential and a reduction of 7 °C was observed

    A study on the dependence of structure of multi-walled carbon nanotubes on acid treatment

    Get PDF
    In the current research, the role of both concentrated nitric acid and ultrasound waves on oxidation of multi-walled carbon nanotubes (MWNTs) was studied. The functionalized MWCNTs were characterized by transmission electron microscopy (TEM), thermogravimetric analyzer, and Fourier transform infrared spectroscopy (FTIR) techniques. It was found that desirable modifications to MWNTs occurred after acid treatment. Carboxylic acid groups were appeared on the side surfaces of MWNTs. FTIR presented the formation of oxygen-containing groups such as C=O and COOH after modification by concentrated nitric acid. The TEM images showed that the aspect ratio of opened MWCNTs was controlled by both ultrasonic waves and acid treatment time. It was also found that the exposure of about 4 h in nitric acid led to the highest removal of the impurities with the least destructive effect

    Application of Rational Second Kind Chebyshev Functions for System of Integrodifferential Equations on Semi-Infinite Intervals

    Get PDF
    Rational Chebyshev bases and Galerkin method are used to obtain the approximate solution of a system of high-order integro-differential equations on the interval [0,∞). This method is based on replacement of the unknown functions by their truncated series of rational Chebyshev expansion. Test examples are considered to show the high accuracy, simplicity, and efficiency of this method

    Fabrication of Iron Aluminide Coatings (Fe3Al and FeAl3) on Steel Substrate by Self-Propagating High Temperature Synthesis (SHS) Process

    Get PDF
    Iron aluminides (Fe3Al and FeAl3) coatings were fabricated on a steel substrate by self-propagating high temperature synthesis (SHS) method. Raw materials, Fe and Al powders, were mixed at two different stoichiometry ratios (3:1 and 1:3). The mixtures and the substrate were placed in a furnace at 950 °C to ignite the SHS process. Coating phases were investigated using X-ray diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). The microstructure of the coatings was analyzed with optical microscopy (OM) and scanning electron microscopy (SEM). The results confirmed that it is possible to produce Fe3Al and FeAl3 coatings on steel substrate using SHS method. In addition, the results show that the coatings were composed of two different phases and their microstructures were non-porous and dense. Wear resistance of the coatings were higher than that of the substrate

    Application of Homotopy Analysis Method to SIR Epidemic Model

    Get PDF
    Abstract In this article, the problem of the spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic is considered. Mathematical modeling of the problem leads to a system of nonlinear ordinary differential equations. Homotopy analysis method is employed to solve this system of nonlinear ordinary differential equations

    Recycled cobalt from spent Li-ion batteries as a superhydrophobic coating for corrosion protection of plain carbon steel

    Get PDF
    A new recycling and film formation scheme is developed for spent Li-ion batteries, which involves the combination of ascorbic-assisted sulfuric leaching and electrodeposition to fabricate a corrosion resistance superhydrophobic coating. The idea behind the simultaneous use of sulfuric and ascorbic is to benefit from the double effect of ascorbic acid, as a leaching reducing agent and as morphological modifier during electrodeposition. Quantum chemical calculations based on the density functional theory are performed to explain the cobalt-ascorbate complexation during the electrocristalization. The optimum parameters for the leaching step are directly utilized in the preparation of an electrolyte for the electrodeposition process, to fabricate a superhydrophobic film with a contact angle of > 150\ub0 on plain carbon steel. The potentiodynamic polarization measurments in 3.5 wt % NaCl showed that boric-pulsed electrodeposited cobalt film has 20-times lower corrosion current density and higher corrosion potential than those on the non-coated substrate

    Sustainable ammonia production processes

    Get PDF
    Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier, many studies have recently attempted to find the most environmentally benign, energy efficient, and economically viable production process for ammonia synthesis. The most commonly utilized ammonia production method is the Haber-Bosch process. The downside to this technology is the high greenhouse gas emissions, surpassing 2.16 kgCO2-eq/kg NH3 and high amounts of energy usage of over 30 GJ/tonne NH3 mainly due to the strict operational conditions at high temperature and pressure. The most widely adopted technology for sustainable hydrogen production used for ammonia synthesis is water electrolysis coupled with renewable technologies such as wind and solar. In general, a water electrolyzer requires a continuous supply of pretreated water with high purity levels for its operation. Moreover, for production of 1 tonne of hydrogen, 9 tonnes of water is required. Based on this data, for the production of the same amount of ammonia through water electrolysis, 233.6 million tonnes/yr of water is required. In this paper, a critical review of different sustainable hydrogen production processes and emerging technologies for sustainable ammonia synthesis along with a comparative life cycle assessment of various ammonia production methods has been carried out. We find that through the review of each of the studied technologies, either large amounts of GHG emissions are produced or high volumes of pretreated water is required or a combination of both these factors occur

    New construction of wavelets base on floor function.

    Get PDF
    In this paper, the properties of the floor function has been used to find a function which is one on the interval [0, 1) and is zero elsewhere. The suitable dilation and translation parameters lead us to get similar function corresponding to the interval [a,b)[a,b). These functions and their combinations enable us to represent the stepwise functions as a function of floor function. We have applied this method on Haar wavelet, Sine–Cosine wavelet, Block-Pulse functions and Hybrid Fourier Block-Pulse functions to get the new representations of these functions
    corecore